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Rotational Displacements in Crystals 
E. N. Ivanov 1 

Received October 24, 1972 

The problem of random rotational displacement is solved and the theory of 
Brownian motion of molecules in crystals is developed. The probability 
distribution of orientations of a molecule is found as a decomposition into 
matrix elements of irreducible representations of point groups. 
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1. The problem of rotational displacements of  a Brownian particle in a 
liquid was solved, in general form, in Ref. 1. Characteristic details of  the 
theory of rotational motion are revealed more distinctly in a two-dimensional 
model, with rotational displacements occuring around one axis. (z) The 
solution of the problem of rotational movement(i, 2) has found wide applica- 
tion in the study of magnetic relaxation, light scattering, and slow neutron 
scattering in liquids. 

The problem of rotational displacements of molecules in crystals has 
its own peculiarities because of which the general solution, m in this case is 
inconvenient for practical calculations. When considering light scattering (2) 
and nuclear magnetic relaxation (3) in molecular crystals it is possible to use 
only the solution for the two-dimensional problem; actually, in real crystals 
reorientations around several axes are possible with, generally speaking, 
different activation energies corresponding to axes of different orders. The 
latter circumstance leads to reorientational probabilities which are different 
for different axes. 

In the present work the solution of the problem of random rotational 
displacement in crystals is given. Physical conditions for the theory are as 
follows. The molecule under consideration is considered to have equilibrium 
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orientations determined by the symmetry of the environment. The jumps 
of molecules from one equilibrium orientation to another are caused by 
random rotational movements due to thermal motion. The probability of 
transition p from one orientation to another is assumed known. 

The set of symmetry operations corresponding to jumps evidently 
forms some point group. The problem lies in determining the distribution of 
orientation probabilities of the molecule at a time t, the initial distribution 
having been given. 

2. Let W(g, t) be the probability of orientation we wish to determine 
at a time t, with g E G (G is a point group). The determination of W(g, t) is 
performed in two steps. First, the probability distribution of the orientation 
of the molecule after N jumps, P(g, N), is calculated. Then, postulating some 
analytic expression (Poisson distribution) for the probability of N jumps 
occurring in time, t, W(g, t) is determined. 

Assume that the probability p of transition depends only upon initial 
orientation k and final orientation g, i.e., p = p(k, g). If P(k, N -- 1) is the 
distribution of probabilities of orientations after N -- 1 jumps, then we have 

P(g, N) = ~ p(k, g) P(k, N -- 1) (1) 
lce G 

This equation serves as a basis for the determination of P(g, N). 
Assume now that the probability p(k, g) depends only upon the rotation 

gi that causes orientation k to transfer into g. i.e., p(k, g) = P(gl). Let r(gl) 
be an operator transforming P(k, N -- 1) into P(g, N -- 1): 

P(g, N -- 1) = -c(g 0 P(k, N -- 1) (2) 

Using Eq. (2), Eq. (1) may be represented as follows: 

P(g, N) = ~ P(gl) ~--1(gl) P(g, N -- 1) (3) 
gl~G 

Since P(g, N) and P(g, N -- 1) are functions on the group G, they can be 
presented as a decomposition of the irreducible representations of the group 
G over matrix elements(4): 

P(g, N) = ~ C•,(N) ~-:)~(g) (4) 
l m n  

where I is the dimension of the irreducible representation. The decomposition 
for P(g, N -  1) is similar. Substituting these decompositions into (3), we 
find 

Z C ~ ( N )  -c~)~(g) = Z ~ P(gO "r-l(g~) C~,(N -- 1) r~)n(g ) (5) 
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The transformation law for matrix elements r~,(g) 
representations is 
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of an irreducible 

r(g; 1) r'~k(g) = Z c~) -1 rg,(& ) r(~(g) (6) 
8 

Taking into account the completeness of the function r~(g) ,  and using 
Eq. (6), we have equations for determining the coefficients C ~  in (5): 

C~n(N) = Z 2 P(g~) r(Z)(~4~,,.,~,l . C~.(N -- 1) (7) 
8 f f l ~ G  

Define the matrix A~ : 

=-- P(gO (8) 
fflEG 

where the superscript T denotes the transpose. So from (7) we have 

C~(N)  = ~ (A~T).,~ C~(N -- 1) (9) 
8 

Equation (9) can be presented conveniently in matrix form: 

C~(N) = AzTC~(N- 1) (10) 

From this equation we can easily find 

CZ(N) = (AzT)xCz(O) (11) 

The matrix C~(0) in (11) is determined from the decomposition of the initial 
distribution P(g, 0) over r}~(g). For a fixed initial orientational distribution, 
P(g, 0) has the following form: 

P(g, O) = 3(g, go) (12) 

where 8(g, go) is the Kronecker symbol. Decomposing (12) over r~l~(g), 
we have 

~(g, go) = Z %.(0)  r"~ (~) 03 ) qTbqZ \ ~ ] 
l f r z n  

Multiplying (13) by r~ (g)  (the bar denotes complex conjugate) and summing 
over all elements of the group G, we find 

c2 (o) = q /w)   2 (go) (14) 



t80 E . N .  Ivanov 

We have used the orthogonality relation for dunctions r(~)( ~ "" ran', ,gmn) .  

Z "'&(g) �9 ~q(g) = (.At~l) ~ 3 ~ a ~  (15) 
9~G 

Substituting (14) into (11) and (11) into (4), we obtain 

P(g, N)~-(1/JV) ~ l'r(s~(go)[(A~r)N]m" w(~)~(g) (16) 
lmns  

The latter equation can be also written as 

P(g, N) = (1/UF) ~ 1Sp[rr ~ ~.(Z)(g)] (17) 

The result is an exact solution to the problem of rotational displacements. 

3. In practical calculations it is necessary to have the distribution of 
orientations W(g, t). To determine W(g, t), the number of jumps N for a 
time t is assumed to obey Poisson's law 

WN(t) =- (N[) -1 (t/T) N e -~/" (18) 

where r is the mean time between two subsequent jumps. Weighting (17) 
by the distribution (18) and summing from 0 to infinity, we obtain 

W(g, t) = ~ (l/Jf) Sp{~-(~)(gol ) exp[--(t/~-)(1 -- A~)] ~-(~)(g)} (19) 
1 

where go is the initial orientation, where go, g ~ G. Relation (19) is the 
required result. 

It easy to verify that both P(g, N) and W(g, t) obey the normalization 
conditions 

P(g,N)= 1, ~ W(g,t)= 1 (20) 
geG g~G 

4. The distribution W(g, t) includes orientations g belonging to group 
G. When calculating correlation functions, we integrate over all g from the 
continuous group of rotations R. So it is useful to rewrite W(g, t) as 

W(g, t) = (1/~V) ~ 6(g -- h) ~ l Sp{~-(~)(goZ ) exp[--(t/~-)(1 -- A~)] T(~)(h)} 
h~G 

(21) 
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Here go e G, but g belongs to group R. In (21) 8(g --  h) denotes the ordinary 
delta-function. The distribution in (21) obeys the normalization condition 

~R W(g, t) dg = 1 (22) 

5. In the present work the theory of Brownian rotational motion of 
molecules in crystals has been developed. The distribution obtained, W(g, t) 
in (21), can be directly used in calculating correlation functions for random 
functions defined by molecular orientations. Actual calculations of correla- 
tion function will be performed later when considering magnetic relaxation 
and light scattering in molecular crystals. 
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